AI的25种可能_【美】约翰·布罗克曼_AZW3_MOBI_EPUB_PDF_电子书(无页码)_【美】约翰·布罗克曼
内容节选
当你要人们想象一个世界,这个世界成功地把所有人工智能领域的进步都很好地结合起来,可能每个人头脑中的画面都会稍有不同。宇宙飞船、飞车或人形机器人是否存在,将使我们对未来的设想完全不同。但有一点是不变的:那就是人类的存在。这正是诺伯特·维纳所设想的世界,当他写到未来的机器与人类配合,并调解彼此之间的合作、改善人类社会时,他的头脑中正展现这样的画面。要达到这一点不仅仅需要想办法令机器更智能,还需要我们更好地理解人类思维的运作。 在人工智能和机器学习领域的最新进展使我们设计出在玩游戏、图像分类或处理文本方面能够达到甚至超过人类能力的系统。但是,如果你想知道为什么前面的司机并到你的车道,为什么人们不顾自己的利益投反对票,或者你应该给你的伴侣买什么生日礼物,问人比问机器更好。解决这些问题需要建立可以在计算机内实现的人类思维模型——这不仅对于将机器更好地融入人类社会至关重要,而且对于确保人类社会能够继续存在也是非常重要的。 设想你拥有一个自动化的智能助手,它能够承担诸如计划三餐、订购杂货之类的基本任务。为了成功地完成这些任务,它需要能够根据你的行为方式来推断你想要什么。虽然这看似简单,但推论人类偏好却可能是一件棘手的事情。例如,当你的这个助手发现在一顿饭中你最喜欢吃的食物是甜点时,它可能开始为你计划完全都由甜点组成的三餐。或者它可能听你抱怨过没有足够的空闲时间,并观察到照顾狗占用了你相当多的空闲时间。在经历了甜点失败后,它也明白了你更喜欢含有蛋白质的食物,所以它可能开始研究狗肉食谱。从这样的例子到听起来像是关于人类未来的局面(人类是好的蛋白质来源),距离并不遥远。 推断人类想要的东西是解决价值对齐的人工智能问题的先决条件。所谓价值对齐,就是使自动化智能系统的价值与人的价值对齐。如果我们想确保这些自动化的智能系统牢记我们的最大利益,价值对齐至关重要。如果它们不能推断出我们所珍视的东西,它们就没有办法支持那些价值观,而且很可能会以违背那些价值观的方式行事。 在人工智能研究中,价值对齐只是一个小的主题,但对它的研究日渐增加。用于解决这个问题的一个工具就是反向强化学习。强化学习是训练智能机器的一种标准方法。通过将特定的结果和奖励联系起来,可以训练机器学习系统遵循产生特定结果的策略。维纳在20世纪50年代就有了这一想法,经过几十年的发展,它现在成了一门艺术。现代机器学习系统可以通过应用强化学习算法找到非常有效的策略来玩电脑游戏,从简单的街机游戏到复杂的实时策略游戏。反向强化学习扭转了这种途径:通过观察已经学习了有效策略的智能主体的行为,我们可以推断导致这些策略发展的奖励。 反向强化学习最简单的形式,就是人们一直在做的事情。这是很常见的,我们甚至不知不觉就做了。当你看到一个同事去装满薯片和糖果的自动售货机买一包不含盐的坚果时,你会推断你的同事:(1)饿了;(2)更喜欢健康食品。当你看到一个熟人明明看到你,却试图避免和你打招呼,你推断他不想和你说话一定有什么原因。当一个成年人花费大量时间和金钱学习演奏大提琴时,你推断他一定非常喜欢古典音乐,但推断一个十几岁的男孩学习演奏电吉他的动机可能更具挑战性。 反向强化学习是一个统计问题:我们有一些数据,即智能主体的行为,然后我们想要评估关于那些行为背后的奖励的各种假设。当面对这个问题时,统计学家会思考数据背后的生成模型:如果智能主体受到一套特定奖励的激励,我们期望生成什么数据?有了生成模型,统计学家就可以做接下来的工作了:什么奖励可能促使主体以那种特定的方式行事? 如果你试图对激励人类行为的奖励做出推断,那么生成模型实际上是关于人类的行为、关于人类思维如何工作的理论。对他人行为背后隐藏原因进行推断,这种推断反映了一种在每个人脑中一直存在的复杂的人性模型。当模型准确时,我们会做出正确的推断。但如果不准确,我们就会犯错。例如,如果教授没有立即回复学生的电子邮件,这个学生可能便会推断他的教授对他漠不关心,这是因为学生没有意识到教授收到电子邮件的数量太多了。 能够对人类需求做出很好推断的自动智能系统,必须具有良好的人类行为生成模型,也就是说,这种人类认知的良好模型可以用能在计算机上实现的术语表达。从历史上来看,对人类认知计算模型的探索与人工智能本身的历史紧紧地交织在一起。在诺伯特·维纳出版《人有人的用处》之后短短几年,卡内基科技的赫伯特·西蒙和兰德公司的艾伦·纽厄尔(Allen Newell)便开发出来第一个人类认知的计算模型“逻辑理论家”,这也是第一个人工智能系统。逻辑理论家通过模拟人类数学家使用的策略自动生成数学证明。 开发人类认知计算模型的挑战是制作既精确又通用的模型。当然,精确的模型能以最小的误差预测人类行为。而通用模型可以预测各种各样的情况,包括其创建者意想不到的情况,例如,好的地球气候模型应该能够预测全球气温升......
- 信息
- 赞誉
- 总序
- 引言 人工智能的机遇与风险
- 01 虽然是谬误,却比以往更靠谱 WRONG, BUT MORE RELEVANT THAN EVER
- 02 不透明学习机器的局限性THE LIMITATIONS OF OPAQUE LEARNING MACHINES
- 03 给机器输入使命THE PURPOSE PUT INTO THE MACHINE
- 04 人工智能第三定律THE THIRD LAW
- 05 我们将如何应对?WHAT CAN WE DO?
- 06 我们的机器使我们陷入非人类混乱THE INHUMAN MESS OUR MACHINES HAVE GOTTEN US INTO
- 07 智能的统一THE UNITY OF INTELLIGENCE
- 08 让我们心怀渴望,超越自我LET’S ASPIRE TO MORE THAN MAKING OURSELVES OBSOLETE
- 09 反对派报告DISSIDENT MESSAGES
- 10 科技预言与观念的不可低估的因果力量TECH PROPHECY AND THE UNDERAPPRECIATED CAUSAL POWER OF IDEAS
- 11 超越奖惩BEYOND REWARD AND PUNISHMENT
- 12 对人类的人工利用THE ARTIFICIAL USE OF HUMAN BEINGS
- 13 把人类放进人工智能的方程式中PUTTING THE HUMAN INTO THE AI EQUATION
- 14 梯度下降GRADIENT DESCENT
- 15 “信息”之于维纳、香农及我们“INFORMATION" FOR WIENER, FOR SHANNON, AND FOR US
- 16 伸缩性SCALING
- 17 第一批机器智能THE FIRST MACHINE INTELLIGENCES
- 18 计算机会成为我们的霸主吗?WILL COMPUTERS BECOME OUR OVERLORDS?
- 19 人类策略THE HUMAN STRATEGY
- 20 使看不见的为人所见:当艺术遇见人工智能MAKING THE INVISIBLE VISIBLE: ART MEETS AI
- 21 人工智能与4岁儿童的对比AIS VERSUS FOUR-YEAR-OLDS
- 22 算法学家的客观梦想ALGORISTS DREAM OF OBJECTIVITY
- 23 机器的权利THE RIGHTS OF MACHINES
- 24 控制论生物的艺术应用THE ARTISTIC USE OF CYBERNETIC BEINGS
- 25 人工智能与文明的未来ARTIFICIAL INTELLIGENCE AND THE FUTURE OF CIVILIZATION